2.- Fonctions équivalentes :

a.- Définition :

Soient f et g deux fonctions définies dans un voisinage d'un point x_0 ($x_0 \in IR$ ou $x_0 = \pm \infty$). On suppose, de plus, que g ne s'annule pas dans un voisinage de x_0 , sauf peut-être en x_0 où l'on peut avoir $g(x_0)=0$.

On dit que f est équivalente à g au voisinage de x_0 si, et seulement si : $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$

On note cela par $f_{x_0} g$.

On dit aussi f et g sont équivalentes au voisinage de x_0 ou en x_0 .

b.- Exemple:

1) Au voisinage de zéro, les fonctions f(x) = Log(x+1) et g(x) = x sont équivalentes puisque $\lim_{x\to 0} \frac{Log(x+1)}{x} = 1$.

On note $Log(x+1) \sim x$.

- 2) Toujours, au voisinage de zéro, $\sin x \sim x$ $\operatorname{car} \lim_{x \to 0} \frac{\sin x}{x} = 1$.
- 3) Au voisinage de l'infini, le polynôme $2x^8 + x^7 + x + 1 \sim 2x^8$.

4) On a:
$$\lim_{x \to +\infty} \frac{e^x + x^2}{e^x} = 1 + \lim_{x \to +\infty} \frac{x^2}{e^x} = 1 + 0 = 1$$
,

d'où $e^x + x^2 \sim e^x$.

c.- Remarque :

Là encore, cette notion n'est valable qu'au voisinage d'un certain point. Pour reprendre, l'exemple précédent où on avait $e^x + x^2 \sim e^x$ au voisinage de $+\infty$, on plus cela au voisinage de $+\infty$, par exemple, car $\lim_{x\to 1} \frac{e^x + x^2}{e^x} = \frac{e+1}{e} \neq 1$.

d.- Théorème :

La relation \sim_{x_0} , «équivalence de deux fonctions au voisinage de x_0 », est une relation d'équivalence dans l'ensemble des fonctions définies dans un voisinage de x_0 .

Démonstration:

Réflexivité:
$$f \sim f$$

Symétrie:
$$f \sim g \Rightarrow g \sim f$$

Transitivité:
$$f \sim g$$
 i.e. $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$

et
$$g \sim h$$
 i.e. $\lim_{x \to x_0} \frac{g(x)}{h(x)} = 1$

Alors
$$\lim_{x \to x_0} \frac{f(x)}{h(x)} = \lim_{x \to x_0} \left(\frac{f(x)}{g(x)} \times \frac{g(x)}{h(x)} \right) = \lim_{x \to x_0} \frac{f(x)}{g(x)} \times \lim_{x \to x_0} \frac{g(x)}{h(x)}$$
$$= 1x1 = 1$$

D'où
$$f \sim h$$

e- Remarque:

Dans la définition et le théorème précèdent, on a supposé qu'il existe un voisinage de $x_{0,}$ tel que f et g ne s'annulent pas dans ce voisinage sauf peut-être en x_0 .

f.-Proposition:

$$\operatorname{Si} f \underset{x_0}{\sim} g \text{ et si } \lim_{x \to x_0} f(x) = \ell \neq 0 \text{ alors } \lim_{x \to x_0} g(x) = \ell$$

Démonstration:

Démonstration :

$$\lim_{x \to x_0} f(x) = \ell \neq 0 \Rightarrow f \underset{x_0}{\sim} \ell$$

$$f \underset{x_0}{\sim} g$$

$$\Rightarrow \lim_{x \to x_0} g(x) = \ell$$

Donc:

Pour chercher la limite d'une fonction f, on peut remplacer f par une fonction équivalente.

Proposition:

Exemple:

2)
$$1 - \cos x = 2 \sin^2 \frac{x}{2}$$

$$\sin \frac{x}{2} \approx \frac{x}{2} \Rightarrow \sin^2 \frac{x}{2} \approx (\frac{x}{2})^2 \Rightarrow 2\sin^2 \frac{x}{2} \approx 2(\frac{x}{2})^2$$
D'où
$$1-\cos x \approx \frac{x^2}{2}$$

Remarque:

Si
$$f \sim f_1$$
 et g $\sim g_1$, on n'a pas un général $f+g \sim f_1+g_1$

En effet;

On a:
$$x^2 + x^3 = x^2 + x^4$$

et $-x^2 = -x^2$

Mais
$$(x^2+x^3)-x^2=x^3$$
 n'est pas équivalente à $(x^2+x^4)-x^2=x^4$ au voisinage de 0.

II.- Développement limités :

1) Formule de Taylor-Young :

* Soit f une fonction dérivable en un point x_0 , alors f peut-être approché dans un voisinage de x_0 par un polynôme de degré 1. En effet,

$$f \text{ dérivable en } x_0 \Rightarrow \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$$

Si on pose
$$\frac{f(x)-f(x_0)}{x-x_0}-f(x_0)=\mathcal{E}(x)$$
, alors $\lim_{x\to x_0} \mathcal{E}(x)=0$

Donc
$$f(x) = f(x) + \frac{(x-x)}{1!} f(x) + (x-x) \mathcal{E}(x)$$
 avec $\lim_{x \to x_0} \mathcal{E}(x) = 0$.

*Si, on applique un raisonnement analogue pour la dérivée seconde, on obtiendra :

$$f(x) = f(x) + \frac{(x-x)}{1!} f'(x) + \frac{(x-x)^2}{2!} f''(x) + (x-x)^2 \mathcal{E}(x) , \text{ avec } \lim_{x \to x_0} \mathcal{E}(x) = 0.$$

alors f peut-être approché dans un voisinage de x_0 par un polynôme de degré 2.

*et avec la dérivée troisième, on aura :

$$f(x) = f(x) + \frac{(x-x)^{3}}{1!} f'(x) + \frac{(x-x)^{2}}{2!} f''(x) + \frac{(x-x)^{3}}{3!} f^{(3)}(x) + (x-x)^{3} \varepsilon(x) , \text{ avec } \lim_{x \to x_{0}} \varepsilon(x) = 0$$

alors f peut-être approché dans un voisinage de x_0 par un polynôme de degré 3.

.

*et si on continue ainsi, jusqu'à la dérivée n^{ème}, on arrive à écrire :

$$f(x) = f(x) + \frac{(x-x)^{0}}{1!} f'(x) + \frac{(x-x)^{2}}{2!} f''(x) + \dots + \frac{(x-x)^{n}}{n!} f^{(n)}(x) + (x-x)^{n} \mathcal{E}(x),$$

$$\operatorname{avec} \lim_{x \to x_{0}} \mathcal{E}(x) = 0$$

alors f peut-être approché dans un voisinage de x_0 par un polynôme de degré n

Soit f une fonction indéfiniment dérivable sur un intervalle] a, b [de IR et soit $x \in]a,b[$.

Pour tout $n \in IN$, il existe une fonction ε définie sur]a, b [telle que \forall $n \in IN$.

$$f(x) = f(x_0) + \frac{(x - x_0)}{1!} f'(x_0) + \frac{(x - x_0)^2}{2!} f''(x_0) + \dots + \frac{(x - x_0)^n}{n!} f^{(n)}(x_0) + (x - x_0)^n \varepsilon(x)$$

$$\text{avec } \lim_{x \to x_0} \varepsilon(x) = 0$$

Et bien sur, $f^{(n)}$ désigne la dérivée $n^{\text{ème}}$ de f.

• Pour x = 0, la formule précédente devient :

$$\forall x \in]a,b[,f(x) = f(0) + \frac{x}{1!}f'(0) + \frac{x^2}{2!} + f''(0) + \dots + \frac{x^n}{n!}f^{(n)}(0) + x^n \mathcal{E}(x), \text{ avec } \lim_{x \to 0} \mathcal{E}(x) = 0$$

Remarque:

Le dernier terme $x^n \mathcal{E}(x)$ de cette formule est négligeable devant x^n au voisinage de 0 car

$$\lim_{x\to 0} \frac{x^n \mathcal{E}(x)}{x^n} = \lim_{x\to 0} \mathcal{E}(x) = 0.$$

C'est-à-dire :
$$x^n \varepsilon(x) = o(x^n)$$
.

On peut donc encore écrire :

$$f(x) = f(0) + \frac{x}{1!}f'(0) + \frac{x^2}{2!}f''(0) + \dots + \frac{x^n}{n!}f^{(n)}(0) + o(x^n)$$
, au voisinage de zéro.

Cette dernière formule qui nous servira le plus dans la suite s'appelle formule de Taylor-Young.