Propriétés de petit o, au voisinage de zéro

Prof. Mohamed El Merouani

Propriété 1:

Au voisinage de zéro

$$x = o(1);$$
 $x^2 = o(x);$ $x^3 = o(x^2);$... etc.

Remarque:

A l'infini, on a le contraire, $x=o(x^2); x^2=o(x^3); \cdots$ etc. En général, au voisinage de l'infini, on a : $x^n=o(x^p)$ pour $n\leq p$

Propriété 2:

Soient $n, p \in \mathbb{N}$; $n \leq p$. Au voisinage de zéro :

$$o(x^n) + o(x^p) = o(x^n)$$

et
$$o(x^n) - o(x^p) = o(x^n)$$

Propriété 3 :

Soient $n, p \in \mathbb{N}$; Au voisinage de zéro :

$$x^p o(x^n) = o(x^{n+p})$$

Propriété 4:

Soient $n, p \in \mathbb{N}$. Au voisinage de zéro :

$$o(x^n) \cdot o(x^p) = o(x^{n+p})$$

Attention!

$$o(x^n) \cdot o(x^n) = o(x^n)$$

Propriété 5:

Soient $n, p \in \mathbb{N}$; $n \ge p$. Au voisinage de zéro :

$$\frac{o(x^n)}{x^p} = o(x^{n-p})$$