Université Abdelmalek Essaâdi Faculté des Sciences de Tétouan Département de Mathématiques

Année Universitaire: 2019-2020

S.M.A. et S.M.I Semestre 3

Rattrapage de Probabilité et Statistique

Durée: 1h30min

Exercice 1: (6 points)	Barème :
 Un joueur effectue plusieurs parties successives. Pour la première partie, les probabilités de gagner ou perdre sont les mêmes ; puis on suppose que : Si une partie est gagnée, la probabilité de gagner la suivante est 0,6 Si une partie est perdue, la probabilité de perdre la suivante est 0,7 On note Un la probabilité de gagner la nème partie. Donner une relation entre Un+1 et Un. Donner Un en fonction de n. Calculer lim Un m→∞ Exercice 2: (8 points)	2 points 2 points 2 points
Soit X une variable aléatoire continue de fonction de densité de probabilité : $f(x) = \begin{cases} x+1 & si & x \le k \\ 0 & si & x > k > 0 \end{cases}$	
1) Trouver la constante k . Dans la suite de l'exercice, on prend pour k la valeur	1 point
 trouvée. 2) Calculer E(X) l'espérance mathématique de la variable aléatoire X. 3) Déterminer F la fonction de répartition de la variable aléatoire X. 4) Déterminer la fonction de densité de probabilité de la variable aléatoire Y=X² et calculer E(Y). 	2 points 2 points 3 points
Exercice 3: (6 points)	

F

Soit la série statistique suivante :

Classes	[0:5]	[5;10]	[10;12[[12;20[
Effectifs	5	20	15	10

- 1) Dresser le tableau des fréquences et tracer la courbe de la fréquence cumulée.
- 2) Calculer la moyenne arithmétique, le mode et la médiane de cette série statistique.
- 3) Calculer sa variance et son écart-type.

1 point 3 points 2 points Corrections du ratturpage de 2019-2021
Probabilités et statistique

Cice 1:

Exercice 1:

Soit Gn l'évenuent « Gagner la partie n », et Un = P(Gn)

1°) Formule des probabilités totales:

$$\iff$$
 $U_{n+1} = 0.6 U_n + 0.3 (1 - U_n)$

$$\Leftrightarrow \boxed{U_{n+1} = 0.3U_n + 0.3}$$

Si on suppose que 20) On a: Un+ 0,3/ ion auva:

(Un) converge vers une limite
$$l$$
, on auva:
 $l = 0,3l + 0,3$ alors $0,7l = 0,3$

donc
$$l = \frac{3}{7}$$

On définit une autre mite $U_n = U_n - \frac{3}{7}$ Un+1 = Un+1 - =

$$= 0.3 \, \text{U}_{\text{h}} + 0.3 - \frac{3}{7}$$

$$= 0.3(U_n + \frac{3}{4}) + 0.3 - \frac{3}{4}$$

(Un) est une soite géométrique de raison 0,3 $U_n = 0.3 U_{n-1} = (0.3)^n U_{n-2} = \cdots = (0.3)^{n-1} U_1$

on a:
$$U_n = (0,3)^n U_n$$

$$u_h - \frac{3}{7} = (0.3)^{h-1} \left(u_h - \frac{3}{7} \right)$$

$$\implies U_{n} = \frac{3}{7} + (0.3)^{n-1} \left(0.5 - \frac{3}{7}\right)$$

$$\lim_{n\to +\infty} U_n = \frac{3}{7} \quad \operatorname{car} \left(0,3\right)^{\frac{n-1}{n\to +\infty}}$$

Exercice 2:

EXERCICE 2:

1°)
$$f(x) = x + 1 > 0$$
 $f(x) = x + 1 > 0$
 $f(x) =$

EX.3

[einner [hi	nicc	f;	Fi=fice	c;	niG	ai	
[0,5[[5,10[5 20	5 25	0,1	0,1	7.5 11	150 165	5 5 2/	4 7.5
[10,12] [12,20]	1	40	1		16	160	8	1,25
	N=3	20				4,1,3		

(1)	Course aimilative
nicc	lack
50	
ys	
25	
5 -	5 10 N2 20 Xi

le Mode Mo:

Comme les amplitudes de closses sont différentes, on définit la closse un dole comme étant celle. du plus grande hanteur dans l'histogramme (qui correspond à hi la plus grande), la closse modale est [10,12[, et on applique une des formules mivants.

(I) $\Pi_0 = \ell_{i-1} + \frac{\ell_{i+1}}{\ell_{i-1}}$ ai

on
$$(II)$$
 $M_0 = Qi_{-n} + \frac{li_{-n} li_{-n}}{(li_{-n}li_{+n})+(li_{-n}li_{-n})}ai$

Par application de (I):

$$M_0 = 10 + \frac{1,25}{4 + 1,25} \times 2 = 10,48$$

Par utilisation de (II):

$$N_0 = 10 + \frac{7.5 - 4}{(7.5 - 1.25) + (7.5 - 4)} \times 2 = 10.72$$

La médiane Mé!

N = 50 = 25, cette valeur existe exacteme

2 = 2 | la closse médiale est

parmi, les nicc = la closse médiale est

[5,10[=[e_-,ei[, Alors on prend

[5,10] = ei = 10.

3°)
$$V_{CM}(x) = \frac{1}{N^{\frac{1}{2}}} \sum_{i} n_{i} (c_{i} - x)^{2}$$
; on a: $x = 9.75$
 C_{i-1} , with C_{i} $C_{i} - x$ $C_{i} - x$ n_{i} C_{i-x} $x = 9.75$
 C_{i-1} , with C_{i} $C_{i} - x$ $C_{i} - x$ n_{i} C_{i-x} $x = 9.75$
 C_{i-1} , with C_{i} C_{i} $x = 9.75$
 C_{i-1} , with C_{i} $x = 9.75$
 C_{i-1} , with C_{i} $x = 9.75$
 C_{i-1} , with C_{i-x} $x = 9.75$
 C_{i-1} , with C

 $Van(x) = \frac{778,125}{50} = 15,5625$ $S(x) = \sqrt{Van(x)} = \sqrt{15,5625} = 3,945$